A standard form for a quadratic equation is
\(ax^2+bx+c=0 \quad , a \neq 0\)
where \(a\), \(b\) and \(c\) are constants.

The quadratic formula is
\(x = \dfrac{- b\pm\sqrt{b^2-4a c}}{2a}\)

* Notice that \(x\) has 2 values! So we get either
\(x = \dfrac{- b{\color{red}{+}}\sqrt{b^2-4a c}}{2a} \quad \)

or \(\quad x = \dfrac{- b{\color{red}{-}}\sqrt{b^2-4a c}}{2a} \)

Special Cases


1 Case 1
Normally a quadratic formula has 2 values. However,  if \(b^2-4ac =0\) , \(x\) has only 1 value.  

\( x = \dfrac{- b\pm\sqrt{b^2-4ac}}{2a} \\ \, \\ \quad \downarrow \\ \, \\ x = \dfrac{-b\pm\sqrt{0}}{2a} \\ \, \\ \quad \downarrow \\ \, \\ x = \dfrac{-b}{2a} \)


2 Case 2

 If \( b^2-4ac \) < 0, \(x\) has no value.  
\( \\ \, \\ x = \dfrac{- b\pm\sqrt{b^2-4ac}}{2a} \)

\( \quad \downarrow \\ \, \\ x = \dfrac{- b\pm\sqrt{\text{negative}}}{2a} \\ \, \\ \quad \downarrow \)
No value!


Example Solve \(2x^2+4x+1\).

 Solution  Using the quadratic formula, we can see that

\(a=2\), \(b=4\), \(c=1\)

\( \require{cancel} x = \dfrac{- b\pm\sqrt{b^2-4a c}}{2a} \\ \, \\ x = \dfrac{- 4\pm\sqrt{4^2-4(2)(1)}}{2(2)} \\ \, \\ x = \dfrac{- 4\pm\sqrt{16-8}}{4} \\ \, \\ x = \dfrac{- 4\pm\sqrt{8}}{4} \\ \, \\ x = \dfrac{- \cancel{{\color{red}{4}}}\pm\sqrt{8}}{\cancel{{\color{red}{4}}}} \\ \, \\ x = \pm \sqrt{8} \\ \, \\ x = \pm \sqrt{4 \times 2} \\ \, \\ x = \pm 2\sqrt{2} \\ \, \\ \)
So we have either \(x= 2\sqrt{2} \)
or \(x= -2\sqrt{2} \).

Solve \(x^2+5x-2=0\) using the quadratic formula.
Answer
First, identify the values of \(a\), \(b\) and \(c\).

\(a=1\), \(b=5\), \(c=-2\)
\( x = \dfrac{- b\pm\sqrt{b^2-4a c}}{2a} \\ \, \\ x = \dfrac{- 5\pm\sqrt{5^2-4(1)(-2)}}{2(1)} \\ \, \\ x = \dfrac{- 5\pm\sqrt{25+8}}{2} \\ \, \\ x = \dfrac{- 5\pm\sqrt{33}}{2} \\ \, \\ \)
So we have either \(x = \dfrac{- 5+\sqrt{33}}{2} \) or \(x = \dfrac{- 5-\sqrt{33}}{2}\).
← Solving Equations by Factoring Practice