Factoring Using FOIL
Do you remember FOIL?F First Terms
O Outer Terms
I Inner Terms
L Last Terms
Review here if you don’t remember it.
Example Find factors from \(x^2+4x+3\).
Solution
\(x^2+4x+3= \underbrace{(x+ \bigcirc )}_{\substack{\text{Think} \\ \text{possible} \\ \text{value} \\ \text{in blank}}} \cdot \underbrace{(x+ \bigcirc )}_{\substack{\text{Think} \\ \text{possible} \\ \text{value} \\ \text{in blank}}} \\ \, \\ = (x+3)(x+1)\)
Solving by Factoring
To solve equations by factoring,- Bring ALL expressions to one side.
- Then, the other side will be 0.
- Factor into a product of expressions.
Example Solve for \(x\).
\(x^3-2x^2+x=-5(x-1)^2\)
Solution Bring all expressions to one side.
\(x^3-2x^2+x {\color{red}{+5(x-1)^2}}=-5(x-1)^2{\color{red}{+5(x-1)^2}} \\ \, \\ x^3-2x^2+x+5(x-1)^2=0 \)
Factor.
\(x(x^2-2x+1)+5(x-1)^2=0 \\ \, \\ x\underbrace{(x-1)(x-1)}_{\substack{\text{Factor using} \\ \text{FOIL} }}+5(x-1)^2=0 \\ \, \\ x(x-1)^2 +5(x-1)^2=0 \\ \, \\ x\underbrace{{\color{red}{(x-1)^2}}}_{\substack{\text{Common} \\ \text{Factor} }} +5\underbrace{{\color{red}{(x-1)^2}}}_{\substack{\text{Common} \\ \text{Factor} }}=0 \\ \, \\ (x+5)(x-1)^2=0 \\ \, \\ \)
\((x+5)=0\) or \((x-1)^2=0\).
\(x=-5\) or \(x=1\)
Solve for \(x\).
\(x^2 -x = 20\)
Solve for \(x\).
\(x^2 +x -4 = -3x + 17\)
Need more practice? Click here to do some math drill on this topic!
\(x^2 -x = 20\)
Solve for \(x\).
\(x^2 +x -4 = -3x + 17\)
Need more practice? Click here to do some math drill on this topic!